7,196 research outputs found

    Exact ground states of spin-2 chains

    Full text link
    We use the matrix product approach to construct all optimum ground states of general anisotropic spin-2 chains with nearest neighbour interactions and common symmetries. These states are exact ground states of the model and their properties depend on up to three parameters. We find three different antiferromagnetic Haldane phases, one weak antiferromagnetic and one weak ferromagnetic phase. The antiferromagnetic phases can be described as spin liquids with exponentially decaying correlation functions. The variety of phases found with the matrix product ansatz also gives insight into the behaviour of spin chains with arbitrary higher spins.Comment: 7 pages, 2 figures, to be published in europhysics letters, uses epl.cl

    On the nature of pressure‐induced coordination changes in silicate melts and glasses

    Get PDF
    Progressive decreases in the Si‐O‐Si angles between corner‐shared silicate tetrahedra in glasses and melts with increasing pressure can lead to arrangements of oxygen atoms that can be described in terms of edge‐ or face‐shared octahedra. This mechanism of compression can account for the gradual, continuous increases in melt and glass densities from values at low pressure that indicate dominantly tetrahedral coordination of Si to values at several tens of GPa that suggest higher coordination. It also can explain the unquenchable nature of octahedrally coordinated Si in glasses, the absence of spectroscopically detectable octahedrally coordinated Si in glasses until they are highly compressed, the gradual and reversible transformation from tetrahedral to octahedral coordination in glasses once the transformation is detectable spectroscopically, and the fact that this transformation takes place in glass at room temperature. It may also have relevance to pressure‐induced transformations from crystalline to glassy phases, the difficulty in retrieving some metastable high pressure crystalline phases at low pressure, and the observed differences between the pressures required for phase transformations in shock wave experiments on glasses and crystals

    A sensitive optical pyrometer for shock-temperature measurements

    Get PDF
    A new optical system was used to determine temperatures above 2400 K in shocked materials by measuring the spectral radiance of sub-microsecond pulses of light emitted from initially transparent solid samples in the visible and near infrared (450 to 900 nm). The high sensitivity of this optical pyrometer is attributed to the small number of channels, large aperture (0.03 steradian), the large bandwidth per channel (40 nm), and large photodiode detection area (0.2 sq cm). Improved calibration techniques reduce systematic errors encountered in previous shock-temperature experiments

    Top-Quark Pair Production Beyond Next-to-Leading Order

    Full text link
    We report on recent calculations of the differential cross section for top-quark pair production at hadron colliders. The results are differential with respect to the top-pair invariant mass and to the partonic scattering angle. In these calculations, which were carried out by employing soft-collinear effective theory techniques, we resummed threshold logarithms up to next-to-next-to-leading logarithmic order. Starting from the differential cross section, it is possible to obtain theoretical predictions for the invariant-mass distribution and the total cross section. We summarize here our results for these observables, and we compare them with the results obtained from different calculational methods.Comment: Talk presented at Loops and Legs in Quantum Field Theory 2010, Woerlitz, Germany, April 25-30, 2010. 6 page

    Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres

    Get PDF
    Recovered samples from shock recovery experiments on single crystal calcite were subjected to thermogravimetric analysis to determine the amount of post-shock CO2, the decarbonization interval and the activation energy, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of approximately 10 to approximately 70 GPa. Optical and scanning electron microscopy reveal structural changes, which are related to the shock-loading. The occurrence of dark, diffuse areas, which can be resolved as highly vesicular areas as observed with a scanning electron microscope are interpreted as representing quenched partial melts, into which shock-released CO2 was injected. The experimental results are used to constrain models of shock-produced, primary CO2 atmospheres on the accreting terrestrial planets

    Jena Soil Model (JSM v1.0; revision 1934): a microbial soil organic carbon model integrated with nitrogen and phosphorus processes

    Get PDF
    Plant–soil interactions, such as the coupling of plants' below-ground biomass allocation with soil organic matter (SOM) decomposition, nutrient release and plant uptake, are essential to understand the response of carbon (C) cycling to global changes. However, these processes are poorly represented in the current terrestrial biosphere models owing to the simple first-order approach of SOM cycling and the ignorance of variations within a soil profile. While the emerging microbially explicit soil organic C models can better describe C formation and turnover, at present, they lack a full coupling to the nitrogen (N) and phosphorus (P) cycles with the soil profile. Here we present a new SOM model – the Jena Soil Model (JSM) – which is microbially explicit, vertically resolved and integrated with the N and P cycles. To account for the effects of nutrient availability and litter quality on decomposition, JSM includes the representation of enzyme allocation to different depolymerisation sources based on the microbial adaptation approach as well as of nutrient acquisition competition based on the equilibrium chemistry approximation approach. Herein, we present the model structure and basic features of model performance in a beech forest in Germany. The model reproduced the main SOM stocks and microbial biomass as well as their vertical patterns in the soil profile. We further tested the sensitivity of the model to parameterisation and showed that JSM is generally sensitive to changes in microbial stoichiometry and processes

    From AMANDA to IceCube

    Full text link
    The first string of the neoteric high energy neutrino telescope IceCube successfully began operating in January 2005. It is anticipated that upon completion the new detector will vastly increase the sensitivity and extend the reach of AMANDA to higher energies. A discussion of the IceCube's discovery potential for extra-terrestrial neutrinos, together with the prospects of new physics derived from the ongoing AMANDA research will be the focus of this paper. Preliminary results of the first antarctic high energy neutrino telescope AMANDA searching in the muon neutrino channel for localized and diffuse excess of extra-terrestrial neutrinos will be reviewed using data collected between 2000 and 2003. Neutrino flux limits obtained with the all-flavor dedicated UHE and cascade analyses will be described. A first neutrino spectrum above one TeV in agreement with atmospheric neutrino flux expectations and no extra-terrestrial contribution will be presented, followed by a discussion of a limit for neutralino CDM candidates annihilating in the center of the Sun.Comment: 15 pages, 8 figures Invited talk contribution at 5th International Conference on Non-accelerator New Physics (NANP 05), Dubna, Russia, 20-25 Jun 200
    • 

    corecore